19 research outputs found

    Trailing Edge Noise Reduction Using Novel Surface Treatments

    Get PDF

    Validation and verification of a 2D lattice Boltzmann solver for incompressible fluid flow

    Get PDF
    The lattice Boltzmann method (LBM) is becoming increasingly popular in the fluid mechanics society because it provides a relatively easy implementation for an incompressible fluid flow solver. Furthermore the particle based LBM can be applied in microscale flows where the continuum based Navier-Stokes solvers fail. Here we present the validation and verification of a two-dimensional in-house lattice Boltzmann solver with two different collision models, namely the BGKW and the MRT models [1]. Five different cases were studied, namely: (i) a channel flow was investigated, the results were compared to the analytical solution, and the convergence properties of the collision models were determined; (ii) the lid-driven cavity problem was examined [2] and the flow features and the velocity profiles were compared to existing simulation results at three different Reynolds number; (iii) the flow in a backward-facing step geometry was validated against experimental data [3]; (iv) the flow in a sudden expansion geometry was compared to experimental data at two different Reynolds numbers [4]; and finally (v) the flow around a cylinder was studied at higher Reynolds number in the turbulent regime. The first four test cases showed that both the BGKW and the MRT models were capable of giving qualitatively and quantitatively good results for these laminar flow cases. The simulations around a cylinder highlighted that the BGKW model becomes unstable for high Reynolds numbers but the MRT model still remains suitable to capture the turbulent von Karman vortex street. The in-house LBM code has been developed in C and has also been parallelised for GPU architectures using CUDA [5] and for CPU architectures using the Partitioned Global Address Space model with UPC [6

    Validation and verification of a 2D lattice Boltzmann solver for incompressible fluid flow

    Get PDF
    The lattice Boltzmann method (LBM) is becoming increasingly popular in the fluid mechanics society because it provides a relatively easy implementation for an incompressible fluid flow solver. Furthermore the particle based LBM can be applied in microscale flows where the continuum based Navier-Stokes solvers fail. Here we present the validation and verification of a two-dimensional in-house lattice Boltzmann solver with two different collision models, namely the BGKW and the MRT models [1]. Five different cases were studied, namely: (i) a channel flow was investigated, the results were compared to the analytical solution, and the convergence properties of the collision models were determined; (ii) the lid-driven cavity problem was examined [2] and the flow features and the velocity profiles were compared to existing simulation results at three different Reynolds number; (iii) the flow in a backward-facing step geometry was validated against experimental data [3]; (iv) the flow in a sudden expansion geometry was compared to experimental data at two different Reynolds numbers [4]; and finally (v) the flow around a cylinder was studied at higher Reynolds number in the turbulent regime. The first four test cases showed that both the BGKW and the MRT models were capable of giving qualitatively and quantitatively good results for these laminar flow cases. The simulations around a cylinder highlighted that the BGKW model becomes unstable for high Reynolds numbers but the MRT model still remains suitable to capture the turbulent von Karman vortex street. The in-house LBM code has been developed in C and has also been parallelised for GPU architectures using CUDA [5] and for CPU architectures using the Partitioned Global Address Space model with UPC [6

    Performance evaluation of a two-dimensional lattice Boltzmann solver using CUDA and PGAS UPC based parallelisation

    Get PDF
    The Unified Parallel C (UPC) language from the Partitioned Global Address Space (PGAS) family unifies the advantages of shared and local memory spaces and offers a relatively straightforward code parallelisation with the Central Processing Unit (CPU). In contrast, the Computer Unified Device Architecture (CUDA) development kit gives a tool to make use of the Graphics Processing Unit (GPU). We provide a detailed comparison between these novel techniques through the parallelisation of a two-dimensional lattice Boltzmann method based fluid flow solver. Our comparison between the CUDA and UPC parallelisation takes into account the required conceptual effort, the performance gain, and the limitations of the approaches from the application oriented developers’ point of view. We demonstrated that UPC led to competitive efficiency with the local memory implementation. However, the performance of the shared memory code fell behind our expectations, and we concluded that the investigated UPC compilers could not efficiently treat the shared memory space. The CUDA implementation proved to be more complex compared to the UPC approach mainly because of the complicated memory structure of the graphics card which also makes GPUs suitable for the parallelisation of the lattice Boltzmann method
    corecore